Category Archives: Physics

Dual-coding SUVAT Problems

The theory of dual coding holds that the formation of mental images, in tandem with verbal processing, is often very helpful for learners. In other words, if we support verbal reasoning with visual representations, then better learning happens.

Many years ago, I was taught the dual coding technique outlined below to help with SUVAT problems. Of course, it wasn’t referred to as “dual coding” back then, but dual coding it most definitely is.

I found it a very useful technique at the time and I still find it useful to this day. And what is more, it is in my opinion a pedagogically powerful procedure. I genuinely believe that this technique helps students understand the complexities and nuances of SUVAT because it brings many things which are usually implicit out into the open and makes them explicit.

SUVAT: “Made darker by definition”?

BOSWELL. ‘He says plain things in a formal and abstract way, to be sure: but his method is good: for to have clear notions upon any subject, we must have recourse to analytick arrangement.’

JOHNSON. ‘Sir, it is what every body does, whether they will or no. But sometimes things may be made darker by definition. I see a cow, I define her, Animal quadrupes ruminans cornutum. But a goat ruminates, and a cow may have no horns. Cow is plainer.

— Boswell’s Life of Johnson (1791)

As I see it, the enduring difficulty with SUVAT problems is that such things can indeed be made darker by definition. Students are usually more than willing to accept the formal definitions of s, u, v, a and t and can apply them to straightforward and predictable problems. However, the robotic death-by-algorithm approach fails all too frequently when faced with even minor variations on a theme.

Worse still, students often treat acceleration, displacement and velocity as nearly-synonymous interchangeable quantities: they are all lumped together in that naive “intuitive physics” category called MOVEMENT.

The approach that follows attempts to make students plainly see differences between the SUVAT quantities and, hopefully, as make them as plain as a cow (to borrow Dr Johnson’s colourful phrasing).

Visual Symbols for the Dual-coding of SUVAT problems

Screenshot 2018-12-25 at 12.02.38.png

1.1 Analysing a simple SUVAT problem using dual coding

Problem: a motorcycle accelerates from rest at 0.8 m/s2 for a time of 6.0 seconds. Calculate (a) the distance travelled; and (b) the final velocity.

Screenshot 2018-12-25 at 12.09.42.png

Please note:

  1. We are using the AQA-friendly convention of substituting values before rearrangement. (Some AQA mark schemes award a mark for the correct substitution of values into an expression; however, the mark will not be awarded if the expression is incorrectly rearranged. Weaker students are strongly encouraged to substitute before rearrangement, and this is what I model.)
  2. A later time is indicated by the movement of the hands on the clock.

So far, so blindingly obvious, some might say.

But I hope the following examples will indicate the versatility of the approach.

1.2a Analysing a more complex SUVAT problem using dual coding (Up is positive convention)

Problem: A coin is dropped from rest takes 0.84 s to fall a distance of 3.5 m so that it strikes the water at the bottom of a well. With what speed must it be thrown vertically so that it takes exactly 1.5 s to hit the surface of the water?

Screenshot 2018-12-25 at 14.33.25.png

Another advantage of this method is that it makes assigning positive and negative directions to the SUVAT vectors easy as it becomes a matter of simply comparing the directions of each vector quantity (that is to say, s, u, v and a) with the arbitrarily selected positive direction arrow when we substitute values into the expression.

But what would happen if we’d selected a different positive direction arrow?

1.2b Analysing a more complex SUVAT problem using dual coding (Down is positive convention)

Problem: A well is 3.5 m deep so that a coin dropped from rest takes 0.84 s to strike the surface of the water. With what speed must it be thrown so that it takes exactly 1.5 s to hit the surface of the water?

Screenshot 2018-12-25 at 14.43.42.png

The answer is, of course, numerically equal to the previous answer. However, following the arbitrarily selected down is positive convention, we have a negative answer.

1.3 Analysing a projectile problem using dual coding

Let’s look at this typical problem from AQA.

Screenshot 2018-12-25 at 14.50.12.png

We could annotate the diagram like this:

Screenshot 2019-01-03 at 18.30.09.png

Guiding our students through the calculation:

Screenshot 2019-01-03 at 18.34.19.png

Just Show ‘Em!

Some trad-inclined teachers have embraced the motto: Just tell ’em!

It’s a good motto, to which dual coding can add the welcome corollary: Just show ’em!

The Unreasonable Effectiveness of Mathematics in the Natural Sciences

The famous phrase is, of course, from physicist Eugene Wigner (1960: 2):

My principal aim is to illuminate it from several sides. The first point is that the enormous usefulness of mathematics in the natural sciences is something bordering on the mysterious and that there is no rational explanation for it.

Further exploration of the above problem using dual coding can, I believe, give A-level students a glimpse of the truth of Wigner’s phrase.

This Is The Root You’re Looking For

In the calculation above, we found that when s = -1.8 m, v could have a value of plus or minus 6.90 m/s. Since we were interested in the velocity of the kite boarder at the end of the journey, we concluded that it was the negative root that was significant for our purposes.

But does the positive root have any physical significance? Why yes, it does. It indicates the other possible value of v when s = -1.8 m.

The displacement was -1.8 m at only one point on the real journey. However, if the kite boarder had started their projectile motion from the level of the water surface instead of from the top of the ramp, their vertical velocity at this point would have been +6.9 m/s.

Screenshot 2019-01-04 at 14.24.14.png

The fact that the kite boarder did not start their journey from this point is immaterial. Applying the mathematics not only tells us about their actual journey, but all other possible journeys that are consistent with the stated parameters and the subset of the laws of physics that we are considering in this problem — and that, to me, borders enough on the mysterious to bring home Wigner’s point.

And finally…

Screenshot 2019-01-04 at 15.11.47.png

This information allows us to annotate our final diagram as below (bearing in mind, of course, that the real journey of the kite boarder started from the top of the ramp and not from the water’s surface as shown).

Screenshot 2019-01-04 at 15.14.20.png

Let me end on a more cheerful note. The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide branches of learning.

Wigner 1960: 9

Reference

Wigner, E. (1960). The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Communications in Pure and Applied Mathematics; Vol. 13, No. 1.

Advertisements

4 Comments

Filed under Dual Coding, Education, Physics, Uncategorized

IoP Energy for busy teachers

The first rule of IoP Energy Club is: you do not talk about energy . . .

. . . unless you’re gonna do a calculation.

— with apologies to Brad Pitt and Chuck Palahniuk

In the UK, the IoP (Institute of Physics) has developed a model of energy stores and energy pathways that has been adopted by all the exam boards. Although answers couched in terms of the old “forms of energy” model currently get full credit, this will almost certainly change over time (gradually or otherwise).

This post is intended to be a “one stop” resource for busy teachers, with suggestions for further reading.

Please note that I have no expertise or authority on the new model beyond that of a working teacher who has spent a fair amount of time researching, thinking about and discussing the issues. What follows is essentially my own take, “supplemented by the accounts of their friends and the learning of the Wise” (if I may borrow from Frodo Baggins!).

Screen Shot 2018-08-07 at 14.53.19.png

Part the First: “Why? For the love of God, why!?!”

The old forms of energy model was familiar and popular with students and teachers. It is still used by many textbooks and online resources. However, researchers have suggested that there are significant problems with this approach:

  1. Students just learn a set of labels which adds little to their understanding (see Millar 2014 p.6).
  2. The “forms of energy” approach focuses attention in the wrong place: it highlights the label, rather than the physical process. There is no difference between chemical energy and kinetic energy except the label, just as there is no difference between water stored in a cylindrical tank and a rectangular tank. (See Boohan 2014 p.12)

The new IoP Stores and Pathways model attempts to address these issues by limiting discussions of energy to situations where we might want to do calculations.

Essentially, the IoP wanted to simplify “energy-talk” and make it a better approximation of the way that professional scientists (especially physicists) actually use energy-concepts. The trick is to get away from the old and nebulous “naming of parts” approach to a newer, more streamlined version that is fit for purpose.

Part the Second: How many energy stores? (Think “Boxes full of joules”)

The second rule of IoP Energy Club is: you do not talk about energy . . .

. . . unless you’re gonna do a calculation.

— with apologies to Brad Pitt and Chuck Palahniuk

The IoP suggests eight named energy stores (listed below with the ones likely to be needed early in the teaching sequence listed first).

Screen Shot 2018-08-07 at 12.19.15.png

From: http://supportingphysicsteaching.net/SPTGraphics/EnEightEnergyStoresINCC.svg. Note: typographical errors in original (accessed 7/8/18)

Many will be surprised to see that electrical energy, light energy and sound energy are not on this list: more on that later.

There are, I think, two very important points:

  1. All of these energy stores represent quantities that are routinely measured in joules.
  2. All of the energy stores represent a system where energy can be stored for an appreciable period of time.

For example, a rattling washing machine is not a good example of a vibration energy store as it does not persist over an extended period of time: as soon as the motor stops, the machine stops rattling. On the other hand, a struck tuning fork, a plucked guitar string or a bell hit with a hammer are good examples of vibration energy stores.

Similarly, a hot object is not a vibration energy store: it is better described as a thermal energy store. Thermal energy stores are useful when there is a change in temperature or a change in state.

Likewise, a lit up filament bulb is not a good example of a thermal energy store because it does not persist over an extended period of time; switch off the current, and the bulb filament would rapidly cool.

Note also that the electric-magnetic energy store applies to situations involving magnets and static electric charges. It is not equivalent to the old “electrical energy”.

The thread linking all the above examples is we limit discussions of energy to situations where we could perform calculations.

Thermal energy store is an appropriate concept for (say) the water in a kettle because we can calculate the change in the thermal energy store of the water and the result is useful in a wide range of situations. However the same is not true of a hot bulb filament as the change in the thermal energy store of the filament is not a useful quantity to calculate (at least in most circumstances). For further discussion, see this blog post and also this section of the IoP Supporting Physics website.

Part the third: How many energy pathways? Think “Watts the point?”

The third rule of IoP Energy Club is: there ain’t no such thing as ‘light energy’ (or ‘sound energy’ or ‘electrical energy’).

— with apologies to Brad Pitt and Chuck Palahniuk

In the new IoP Energy model, there is no such thing as a “light energy store”. Instead, we talk about energy pathways.

Energy pathways describe dynamic quantities that are routinely measured in watts. That is to say, they are dynamic or temporal in the sense that their measurement depends on time (watts = joules per second); energy stores are static or atemporal over a given period of time.

It is not useful to talk about a “light energy store” because it does not persist over time: the visible light emitted by (say) a street lamp is not static — it is not helpful to think of it as a static “box of joules”. Instead it is a dynamic “flow” of joules which means its most convenient unit of measurement is the watt.

As an analogy, think of an energy store as a container or tank; in contrast, think of a pathway as a channel or tap that allows energy to move from one store to another. )

You can read more on the “tanks and taps” analogy here.

Screen Shot 2018-08-07 at 15.27.23

The cautious reader should note that the IoP describe slightly different pathways which you can read about here. (Mechanical and Electrical Working are in, but the IoP talk about “Heating by particles” and “Heating by radiation”; on this categorisation, sound would fit into the “Mechanical Working” category!)

The fourth rule of IoP Energy Club is: I don’t care what you call it, if it’s measured in watts, it’s a pathway not an energy store, OK?

— with apologies to Brad Pitt and Chuck Palahniuk

You can look forward to more ‘IoP Energy Club Rules’, as and when I make them up.

Important note: all of the above content is the personal opinion of a private individual. It has not been approved or endorsed by the IoP.

References

Boohan, R. (2014). Making Sense of Energy. School Science Review, 96(354), 33-43.

Millar, R. (2014). Teaching about energy: from everyday to scientific understandings. School Science Review, 96(354), 45-50.

2 Comments

Filed under Humour, IoP Energy "Newspeak", Physics

The Life and Death of Stars

Stars, so far as we understand them today, are not “alive”.

Now and again we saw a binary and a third star approach one another so closely that one or other of the group reached out a filament of its substance toward its partner. Straining our supernatural vision, we saw these filaments break and condense into planets. And we were awed by the infinitesimal size and the rarity of these seeds of life among the lifeless host of the stars. But the stars themselves gave an irresistible impression of vitality. Strange that the movements of these merely physical things, these mere fire-balls, whirling and traveling according to the geometrical laws of their minutest particles, should seem so vital, so questing.

Olaf Stapledon, Star Maker (1937)

Star Maker Cover

And yet, it still makes sense to speak of a star being “born”, “living” and even “dying”.

We have moved on from Stapledon’s poetic description of the formation of planets from a filament of star-stuff gravitationally teased-out by a near-miss between passing celestial orbs. This was known as the “Tidal Hypothesis” and was first put forward by Sir James Jeans in 1917. It implied that planets circling stars would be an incredibly rare occurrence.

Today, it would seem that the reverse is true: modern astronomy tells us that planets almost inevitably form as a nebula collapses to form a star. It appears that stars with planetary systems are the norm, rather than the exception.

Be that as it may, the purpose of this post is to share a way of teaching the “life cycle” of a star that I have found useful, and that many students seem to appreciate. It uses the old trick of using analogy to “couch abstract concepts in concrete terms” (Steven Pinker’s phrase).

Screen Shot 2018-06-24 at 16.49.15.png

I find it humbling to consider that currently there are no black dwarf stars anywhere in the observable universe, simply because the universe isn’t old enough. The universe is merely 13.7 billion years old. Not until the universe is some 70 000 times its current age (about 1015 years old) will enough time have elapsed for even our oldest white dwarfs to have cooled to become a black dwarf. If we take the entire current age of the universe to be one second past midnight on a single 24-hour day, then the first black dwarfs will come into existence at 8 pm in the evening…

And finally, although to the best of our knowledge, stars are in no meaningful sense “alive”, I cannot help but close with a few words from Stapledon’s riotous and romantic imaginative tour de force that is yet threaded through with the disciplined sinews of Stapledon’s understanding of the science of his day:

Stars are best regarded as living organisms, but organisms which are physiologically and psychologically of a very peculiar kind. The outer and middle layers of a mature star apparently consist of “tissues” woven of currents of incandescent gases. These gaseous tissues live and maintain the stellar consciousness by intercepting part of the immense flood of energy that wells from the congested and furiously active interior of the star. The innermost of the vital layers must be a kind of digestive apparatus which transmutes the crude radiation into forms required for the maintenance of the star’s life. Outside this digestive area lies some sort of coordinating layer, which may be thought of as the star’s brain. The outermost layers, including the corona, respond to the excessively faint stimuli of the star’s cosmical environment, to light from neighbouring stars, to cosmic rays, to the impact of meteors, to tidal stresses caused by the gravitational influence of planets or of other stars. These influences could not, of course, produce any clear impression but for a strange tissue of gaseous sense organs, which discriminate between them in respect of quality and direction, and transmit information to the correlating “brain” layer.

Olaf Stapledon, Star Maker (1937)

3 Comments

Filed under Philosophy, Physics, Science

Crossing Cognitive Chasms With P-prims

Crossing a cognitive chasm . . .

Apparently, roughly 10% of humans still believe that the Earth is larger than the Sun. Do they believe this because they haven’t been properly educated? Possibly. Do they believe this because they’re stupid? Probably not.

In fact, the most likely explanation is that the individuals concerned just haven’t thought that much about it. The Earth looks big; the Sun looks like a small disc in the sky; ergo, the Sun is smaller than the Earth.

The individuals are relying on what Andrea diSessa (1988) would call a phenomenological primitive or p-prim: “These are simple abstractions from common experiences that are taken as relatively primitive in the sense that they generally need no explanation; they simply happen.”

What is a p-prim (phenomenological primitive)?

A p-prim is a pattern of thought that is applied across a range of contexts. For example, the “Ohm’s Law” p-prim — the idea that increased “effort” invariably leads to a larger “outcome” and that increased “resistance” always yields a smaller “outcome” — is routinely applied not just to the domain of electrical circuits, but to the physical world in terms of pushing and pulling objects, and not least to the domain of psychology in the context (say) of persuading a reluctant person to perform an action.

Examples of other p-prims would include:

  • The “Father Dougal” p-prim: things that look small really are small; large things always look bigger than small things.
  • The “More Is Better” p-prim: that more of any quantity is invariably better than a smaller amount.
  • The “Dynamic Balance” p-prim: equal and opposite competing “forces” or “influences” can produce an equilibrium or “static outcome”.

P-prims are not acquired by formal teaching. They are abstractions or patterns extracted from commonplace experiences. They are also, for the most part, primarily unspoken concepts: ask a person to justify a p-prim and the most likely answer is “because”!

Also, p-prims exist in isolation: people can easily hold two or more contradictory p-prims. The p-prim that is applied depends on context: in one situation the “Ohm’s Law” p-prim might be cued; in another the “Dynamic Balance” p-prim would be cued. Which p-prim is cued depends on the previous experience of the individual and the aspects of the situation that appear most significant to that individual at that particular time.

The KIP (Knowledge in Pieces) Model

diSessa integrates these p-prims (and many others) into a “Knowledge in Pieces” model:

[I]ntutive physics is a fragmented collection of ideas, loosely connected and reinforcing, having none of the commitment or systematicity that one attributes to theories.

The model is summarised more poetically by Dashiell Hammett (quoted by diSessa):

Nobody thinks clearly, no matter what they pretend. Thinking’s a dizzy business, a matter of catching as many of those foggy glimpses as you can and fitting them together the best you can. That’s why people hang on so tight to their beliefs and opinions; because, compared to the haphazard way in which they arrived at, even the goofiest opinion seems wonderfully clear, sane, and self-evident. And if you let it get away from you, then you’ve got to dive back into that foggy muddle to wangle yourself out another to take its place.

— Dashiell Hammett, The Dain Curse

So, for example, a person might respond to the (to them) out-of-left-field question of “Which is bigger: the Earth or the Sun?” by simply selecting what seems to them a perfectly appropriate p-prim such as the “Father Dougal” p-prim: the Sun looks like a small disc in the sky therefore it is smaller than the Earth. It is important to note that this process often happens without a great deal of thought. The person reaches into a grab-bag of these small units of thought and takes hold of one that, at least at first glance, seems applicable to the circumstances. The person is simply applying their past experience to a novel situation.

Picking Your P-prim

However, as Anne Nelmes (2004) points out, the problem is that often the wrong p-prim is cued and applied to the wrong situation. As science teachers, is there a way that we can encourage the selection of more suitable p-prims?

Nelmes believes that there is:

Analogy has long been used to aid understanding of scientific concepts, both in and out of the classroom. Rather than trying to overtly change the misconception into the scientific conception, it may be as, or more, effective and certainly less time consuming to cue the right idea using analogy on a very low key level, without the pupils even realising that an analogy has been used. The idea of cueing correct ideas comes from work done by diSessa and others on p-prims (phenomenological primitives). These are small knowledge units which are cued to an active state to explain phenomena.

It is hoped the correct p-prim will be cued by use of the analogy and, if cued repeatedly, will strengthen.

One example presented by Nelmes that I find quite persuasive is in the context of students’ difficulty in accepting that good absorbers of heat radiation are also good emitters of heat radiation. A matt black surface will absorb a substantial fraction of the infrared radiation falling on it; however, matt black surfaces are also the most effective emitters of infrared radiation.

aborbers emitters

This seems a concept-change-too-far for many students; particularly as it often follows hard on the heels of good conductor = poor insulator and good insulator = poor conductor. Students find it hard to accept that a substance that is good at one thing can also be good at its opposite.

Nelmes suggests cueing a more appropriate p-prim for this context by the use of low key analogies such as:

  • Effective communicators are good at taking in information and good at giving out information.
  • Effective netball players are good at throwing the ball and catching the ball.

Nelmes’ research suggests that the results from such strategies may be modest but are generally positive. One telling example is the fact that many student answers featured “you” as in “I think this because when you are good at something, radiating, you are usually good at the other, absorbing heat.”

As Nelmes notes, the use of the personal pronoun in such answers suggests that students had, perhaps, absorbed the bridging analogy unconsciously.

Be that as it may, I think the p-prim and bridging analogy strategy is one I will be attempting to add to my teaching repertoire.

References

diSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. B. Pufall (Eds.), Constructivism in the computer age (pp. 49-70). Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.

Nelmes, A. (2004). Putting conceptions in their place: using analogy to cue and strengthen scientifically correct conceptions.

11 Comments

Filed under Education, p-prims, Physics

Electrifying Engelmann

It is a long-standing and melancholy truth that, despite the best efforts of many legions of Physics teachers, many students continue to not only dislike electricity, but to hate it with the white-hot intensity of a million suns.

What we have here, I think, is a classic failure to communicate.

A final fact is that samenesses and differences of examples are more obvious when the examples are juxtaposed. This fact implies that the continuous conversion of examples provides the clearest presentation of samenesses and, differences because it creates the changes that occur from one example to the next.

— Siegfried Engelmann and Douglas Carmine, Theory of Instruction (1982) p.46

Looking at my own teaching, I certainly attempt to juxtapose a number of circuits. I really want to highlight the similarities and differences between circuits in order to better develop my students’ understanding. But the problem is that both limited resources and other practical considerations mean that the juxtapositioning cannot happen by continuous conversion, except very rarely.

For example, I would set up (or ask students to set up) a circuit with a single bulb with an ammeter, then I (or we) would disassemble the circuit and rebuild it with the ammeter in a different position, or a second bulb added in series or in parallel . . .

It occurs to me that what we are relying on to thread these juxtapositions together in students’ minds is a sequence of circuit diagrams. I suppose it’s another case of the curse of knowledge writ large: experts and novices think differently.

As a beginning teacher, I remember being genuinely shocked that many students found it easier to interpret a photograph or a 3D drawing rather than the nice, clutter-free, minimalist lines of a circuit diagram.

Without a doubt, many students retain strong visual impressions of many of the circuit diagrams they encounter, but they do not parse and decode the diagrams in the same way as their teachers do.

And that, I think, is the major problem when we are introducing electric circuits.

But what to do?

— R. S. Thomas, The Cure

Can we introduce the important aspects of electrical circuits by continuous conversion of examples?

I think we can. And what is more, I think it will be more effective than the itty-bitty assembly and disassembly of circuits that I have practiced to date.

Conservation of electrical current (and current in parallel circuits) by continuous conversion

Parallel Circuit

This is introduced with a teacher demonstration of the above circuit. Students are invited to note the identical readings on both ammeters and asked to explain why they are identical. They are then asked to predict the effect of adding a second bulb in parallel. The teacher then adds the second bulb by connecting the flying lead. The process is repeated with the third and fourth bulbs, with the teacher testing students’ understanding by asking them to predict the change in current readings as bulbs are added and removed. The teacher also tests students’ understanding of the conservation of current by asking students to predict whether the reading on both ammeters will be the same or different as bulbs are added and removed.

I find it useful to include a bulb that is not identical to the other three. It should be noticeably brighter or dimmer than the other three with the same p.d. so that students do not make the incorrect inference that the current always increases or decreases in equal steps when the circuit is changed.

The teacher could also draw the original circuit on a student whiteboard and ask students to do likewise. The changes that are about to be made could be described and students could be asked could alter the picture/circuit diagram and write their prediction on their whiteboards. They could then compare their version with the teacher’s and their prediction could be quickly tested by making the proposed changes “live” in front of the students.

If resources and time permit, students could then, of course, go on to construct their own parallel circuits as a class practical. However, I think it is important that these vital, foundational ideas are introduced (or re-introduced!) via a teacher demonstration to avoid possible cognitive overload for students.

Series circuits by continuous conversion

Series Circuit

In this demonstration circuit, four of the three bulbs are short-circuited so that they are initially unlit. The teacher asks students to explain only one bulb in the circuit is lit: it is helpful if they have previously encountered parallel circuits and can explain this in terms of electrical current taking the “easier” route (assuming they have not yet encountered the concept of electrical resistance).

Again, the two ammeters allow the teacher to emphasise and test students understanding of the idea that current is conserved.

The teacher then asks students to predict the change in current reading when switch X is opened: will it increase or decrease? Why would it increase or decrease? The process is repeated with switches Y and Z and students’ understanding is tested by asking them to predict the effect on the current reading of opening or closing X, Y or Z.

As before, the teacher would amend her circuit diagram on her student whiteboard and students would do likewise. For example: “I am going to open switch Y. Change the circuit diagram. Show me. What will happen to the reading on the left hand ammeter? What will happen to the reading on the right hand ammeter? Explain why.”

Again, I recommend that at least one out of the four bulbs in not identical to the other three to help prevent students from drawing the incorrect inference that the current will always increase or decrease in identical steps.

4 Comments

Filed under Direct Instruction, Education, Physics, Siegfried Engelmann

When Harold Met William

Legend has it that in 1988, U.S. Presidential candidate Michael Dukakis opened an election rally in front of a huge crowd in a red state with the ringing words: “This joke will appeal to the Latin scholars amongst you…” He went on to lose decisively to George H. W. Bush.

On that note, this joke will appeal to all the Physics teachers (and other aficionados of the dot-and-cross convention).

Harold

For the non-physicists amongst you, this is an illustration of the dot-and-cross convention, which allows us to represent 3D objects on a 2D diagram. The dot represents a vector emerging out of the plane of the paper (think of an arrow coming towards you) and the cross represents a vector directed into the plane of the paper (think of an arrow going away from you).

520px-VFPt_Solenoid_correct2.svg

A solenoid (electromagnet) represented using the dot-and-cross convention. From http://www.wikiwand.com/en/Solenoid

I’ll get my coat…

Leave a comment

Filed under Humour, Physics

Engelmann (and John Stuart Mill) Revisited

Even for the most enthusiastic and committed of us, Engelmann and Carnine’s Theory of Instruction (1982) is a fabulously intimidating read.

I have written about some of the ideas before, but a recent conversation with a fellow Physics teacher (I’m looking at you, @DeepGhataura) suggested to me that a revisit might be in order.

In a nutshell, we were talking about sets of examples. Engelmann and Carnine argue that learners learn when they construct generalisations or inferences from sets of examples. It is therefore essential that the sets of examples are carefully chosen and sequenced so that learners do not accidentally generate false inferences. A “false inference” in this context is any one that the instructor does not intend to communicate.

Engelmann and Carnine painstakingly constructed a set of logical rules that they hoped would minimise (or, more ambitiously, completely eliminate) the possibility of generating false inferences. These include the sameness principle of juxtaposition and the difference principle of juxtaposition.

However, in 2011 Carnine and Engelmann realised that they had, in a sense, been re-inventing the wheel as the same logical rules had been formulated by philosopher John Stuart Mill in A System of Logic (1843).

They outlined their system using Mill’s terms and language in the book Could John Stuart Mill Have Saved Our Schools? (2011).

 

The Method of Difference (The Difference Principle of Juxtaposition)

How can we use examples to communicate a concept to learners so that the possibility of their drawing false inferences is minimised?

The Method of Difference seeks to establish the limits of a given concept A by explicitly considering not-A.

Imagine a learner who did not understand the concept of blue. We would introduce the concept by showing (say) a picture of a blue bird and saying “This is blue.” We would then show a picture of a bird identical in every respect except that it’s colour was (say) green and say “This is not blue.”

So-far-so-blindingly-obvious, you might say. What you might not immediately appreciate is that applying this simple method rules out a large set of possible misconceptions. Without explicitly considering not-A, a learner might, with some justification, conclude that blue meant “has a beak” or “has feathers”. The Method of Difference rules out these false inferences.

Mind your P’s and Q’s

For a beginning reader, the letters p, q, b and d are problematic since they all share the same basic shape. The difference between them is a difference of orientation. Carnine and Engelmann suggest writing the letter ‘p’ on a transparent sheet and rotating and flipping the sheet to explicitly teach the difference between p and not-p.

PND

PNB

PNQ

Could this be used in Physics teaching?

 

Don’t zig when you ought to zag

Possibly — one recurring problem that I’ve noticed is that some A-level students routinely mix up magnetic and electric fields. They apply Coulomb’s Law when they should be applying F = BIl , and apply Fleming’s Left Hand Rule where it has no business being applied.

It seems reasonable to assume that it is not a lack of knowledge that is holding them back, but rather a misapplication of knowledge that they already possess. In other words, they are drawing the wrong inference from the example sets that have been presented to them.

Could using the Method of Difference at the beginning of the teaching sequence stop learners from drawing false inferences about the nature of electric and magnetic fields?

BandEfields1

BandEfields2

You know, I rather think it might…

6 Comments

Filed under Direct Instruction, Physics, Siegfried Engelmann