Physics Six Mark Calculation Question? Give it the old FIFA-One-Two!

Batman gives a Physics-Six-Marker the ol’ FIFA-One-Two,

Many students struggle with Physics calculation questions at KS3 and KS4. Since 40% of the marks on GCSE Physics papers are for maths, this is a real worry for their teachers.

The FIFA system (if that’s not too grandiose a description) provides a minimal and flexible framework that helps students to successfully attempt calculation questions.

Since adopting the system, we encounter far fewer blanks on test and exam scripts where students simply skip over a calculation question. A typical student can gain 10-20 marks.

The FIFA system is outlined here but essentially consists of:

  • Formula: students write the formula or equation
  • Insert values: students insert the known data from the question.
  • Fine-tune: rearrange, convert units, simplify etc.
  • Answer: students state the final answer.

The “Fine-tune” stage is not — repeat, not — synonymous with re-arranging and is designed to be “creatively ambiguous” and allow space to “do what needs to be done” and can include unit conversion (e.g. kilowatts to watts), algebraic rearrangement and simplification.

The FIFA-One-Two

Uniquely for Physics, instead of the dreaded “Six Marker” extended writing question, we have the even-more-dreaded “Six Marker” long calculation question. (Actually, they can be awarded anywhere between 4 to 6 marks, but we’ll keep calling them “Six Markers” for convenience.)

The “FIFA-one-two” strategy can help students gain marks in these questions.

Let’s look how it could be applied to a typical “Six mark” long calculation question. We prepare the ground like this:

FIFA-one-two: the set up. (Note that since the expected unit of the final answer is given, this is actually a five marker not a six marker; however, the system works equally well in both cases.)

Since the question mentions the power output of the kettle first, let’s begin by writing down the energy transferred equation.

Next we insert the values. It’s quite helpful to write in any “non standard” units such as kilowatts, minutes etc as a reminder that these need to be converted in the Fine-tune phase.

And so we arrive at the final answer for this first section:

Next we write down the specific heat capacity equation:

And going through the second FIFA operation:

Conclusion

I think every “Six Marker” extended calculation question can be approached in a productive way using the FIFA-One-Two approach.

This means that, even if students can’t reach the final answer, they will pick up some method marks along the way.

I hope you give the FIFA-One-Two method a go with your students.

Talk from Chat Physics 2021 https://chatphysics.org/chat-physics-live-2021

Reducing Cognitive Overload in Practicals by graphing with Excel

Confession, they say, is good for the soul. I regret to say that for far too many years as a Science teacher, I was in the habit of simply ‘throwing a practical’ at a class in the belief that it was the best way for students to learn.

However, I now believe that this is not the case. It is another example of the ‘curse of the expert’. As a group, Science teachers are (whether you believe this of yourself and your colleagues or not) a pretty accomplished group of professionals. That is to say, we don’t struggle to use measuring instruments such as measuring cylinders, metre rules (not ‘metre sticks’, please, for the love of all that’s holy), ammeters or voltmeters. Through repeated practice, we have pretty much mastered tasks such as tabulating data, calculating the mean, scaling axes and plotting graphs to the point of automaticity.

But our students have not. The cognitive load of each of the myriad tasks associated with the successful completion of full practical should not be underestimated. For some students, it must seem like we’re asking them to climb Mount Everest while wearing plimsols and completing a cryptic crossword with one arm tied behind their back.

One strategy for managing this cognitive load is Adam Boxer’s excellent Slow Practical method. Another strategy, which can be used in tandem with the Slow Practical method or on its own, is to ‘atomise’ the practical and focus on specific tasks, as Fabio Di Salvo suggests here.

Simplifying Graphs (KS3 and KS4)

If we want to focus on our students’ graph scaling and plotting skills, it is often better to supply the data they are required to plot. If the focus is interpreting the data, then Excel provides an excellent tool for either: a) providing ready scaled axes; or b) completing the plotting process.

Typical exam board guidance states that computer drawn graphs are acceptable provided they are approximately A4 sized and include a ‘fine grid’ similar to that of standard graph paper (say 2 mm by 2 mm) is used.

Excel has the functionality to produce ‘fine grids’ but this can be a little tricky to access, so I have prepared a generic version here: Simple Graphs workbook link.

Data is entered on the DATA1 tab. (BTW if you wish to access the locked non-green cells, go to Review > Unlock sheet)

The data is automatically plotted on the ‘CHART1 (with plots)’ tab.

Please note that I hardly ever use the automatic trendline drawing functionality of Excel as I think students always need practice at drawing a line of best fit from plotted points.

Alternatively, the teacher can hand out a ‘blank’ graph with scaled axes using the ‘CHART1 (without) plots’ tab.

Using the Simple Graph workbook with a class

I have used this successfully with classes in a number of ways:

  • Plotting the data of a demo ‘live’ and printing out a copy of the completed graph for each student.
  • Supplying laptops or tablet so that students can enter their own data ‘live’.
  • Posting the workbook on a VLE so that students can process their own data later or for homework.

Adjusting the Simple Results Graph workbook for different ranges

But what if the data range you wish to enter is vastly different from the generic values I have randomly chosen?

It may look like a disaster, but it can be resolved fairly easily.

Firstly, right click (or ctrl+click on a Mac) on any number on the x-axis. Select ‘Format Axis’ and navigate to the sub-menu that has the ‘Maximum’ and ‘Minimum’ values displayed.

Since my max x data value is 60 I have chosen 70. (BTW clicking on the curved arrow may activate the auto-ranging function.)

I also choose a suitable value of ’10’ for the “Major unit’ which is were the tick marks appear. And I also choose a value of ‘1’ for the minor unit (Generally ‘Major unit’/10 is a good choice)

Next, we right click on any number on the y-axis and select ‘Format Axis’. Going through a similar process for the y-axis yields this:

… which, hopefully, means ‘JOB DONE’

Plotting More Advanced Graphs at KS4 and KS5

The ‘Results Graph (KS4 and KS5)’ workbook (click on link to access and download) will not only calculate the mean of a set of repeats, but will also calculate absolute uncertainties, percentage uncertainties and plot error bars.

Again, I encourage students to manually draw a line of best fit for the data, and (possibly) calculate a gradient and so on.

And finally…

If you find these Excel workbooks useful, please leave a comment on this blog or Tweet a link (please add @emc2andallthat to alert me).

Happy graphing, folks 🙂