Engelmann and Direct Instruction (Part 4)

Much is due to those who first broke the way to knowledge, and left only to their successors the task of smoothing it.

— Samuel Johnson, A Journey To The Western Isles Of Scotland (1775)

In 1982 Siegfried Engelmann and Douglas Carnine published their Theory of Instruction. This was some 300 years after Newton started the scientific revolution by publishing his Principia; and some 70 years after Russell and Whitehead in the Principia Mathematica attempted to show that the entirety of mathematics could be derived from the laws of logic (famously taking 300 pages to prove that 1+1=2).

In short, Engelmann and Carnine were attempting to start an educational scientific revolution. They wanted to replace the traditional liberal arts foundation of educational theory with a rigorously logical scientific foundation. Their Theory of Instruction is quite simply nothing less than an attempt to write a Principia Pedagogica.

Towards a 'Principia Pedagogica'?

Effective instruction is not born of grand ideas or scenarios that appeal to development or love of learning. It is constructed from the logic and tactics of science.

— S. Engelmann and D. Carnine, Could John Stuart Mill Have Saved Our Schools? Kindle edition, location 1944

In the opening section of the T.O.I., Carnine and Engelmann argue that human beings learn primarily, and in fact literally, from the power of example.

[Learners have the] capacity to learn any quality that is exemplified through examples (from the quality of redness to the quality of inconsistency) . . . This mechanism . . . is capable of learning qualities as subtle as the unique tone of a particular violin or qualities that involve the correlation of events (such as the relationship of events on the sun to weather on the earth).

— S. Engelmann and D. Carnine, Theory of Instruction: Principles and Applications, Kindle edition, locations 365-383

To this end, they propose a simplified (or minimalist, if you will) two step mechanism of how human beings learn:

The first step of the proposed learning mechanism is the presentation of a range of examples. For instance, to explain the concept of “red” an instructor would present examples of red objects; to explain the concept of “conservation of volume”, she would present instances of (say) a fixed volume of liquid being poured into containers of varying shapes.

The second step of the learning mechanism is when the learner mentally constructs a valid generalisation, or mental rule about the qualities or features common to the examples presented. Carnine and Engelmann argue that human beings naturally and immediately attempt to generalise or form such rules when presented with any new information.

Table

From: T.O.I, Kindle loc 399

They do not attempt to argue that the whole of human behaviour can be reduced to this simple two step mechanism, but merely that by accepting this simple model, one “can account for nearly all observed cognitive behaviour” (T.O.I. Kindle loc 375)

Note that the first step is about what is to be learned, and the second step is about how it is learned.

In Carnine and Engelmann’s view, the first step is the responsibility of the instructor. The planning should focus on a rigorous logical analysis of the concept that is to be taught, and should not include any consideration of the likely behavioural response of the learner (e.g. whether she will find it “fun”).

The only factor that limits the learner . . . is the acuity of the sensory mechanism that receives information about [the concept]. (T.O.I. Kindle loc 380-1)

The second step is within the purview of the learner. However, this is also the point at which the instructor would use behavioural analysis to ascertain

. . . the extent to which the learner does or does not possess the mechanisms necessary to respond to the . . . presentation of the concept. [Then one should design] instruction for the unsuccessful learner that will modify the learner’s capacity to respond to the . . . presentation. This instruction is not based on a logical analysis of the communication, but on a behaviour analysis of the learner. (T.O.I. Kindle loc 348-352)

Teachers will, of course, be aware that this is not how we do things in our current educational system, especially as far as the standard techniques of differentiation are concerned.

Are Carnine and Engelmann correct? I’m not sure, but I find their ideas fascinating. Looking at them through the lens of my experience, I would go so far as to say that, intuitively at least, they appear to have the copper-bottomed “ring of truth” (as Richard Ingrams used to say) about them. At the very least, they are deserving of further study and attention.

Part 1 of this series can be found here.

 

Advertisements

4 Comments

Filed under Direct Instruction, Education, Siegfried Engelmann

4 responses to “Engelmann and Direct Instruction (Part 4)

  1. Pingback: Engelmann and Direct Instruction (Part 3) | e=mc2andallthat

  2. Pingback: Engelmann and Direct Instruction (Part 5) | e=mc2andallthat

  3. This is the first of this series I have read… Interesting and useful… thanks for sharing!

    Immediate reaction to the notion of presenting examples is also to show the learner non-examples e.g. things that are NOT red, to help the learner in her generalisation; to pinpoint the features of the concept, and clarify concept boundaries. (Source, if I remember correctly: Make it Stick by Brown et al).

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s